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Forcings and Feedback

NASA’s goal is to understand the observed Earth climate variability,
and determine and predict the climate’s response to both natural and
human-induced forcing.

The basic idea is that changes in one climate subsystem will cause or
force responses in other subsystems.  These responses in turn feed
back to force other subsystems.
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Relevant Variables

One of the greatest difficulties in this field is the identification of the
RELEVANT VARIABLES.
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Causal Interactions

Once relevant variables are identified, one can begin examining
their CAUSAL INTERACTIONS, which implement forcings and
feedbacks.

However, these calculations are useless without error bars that
indicate our degree of uncertainty.  Much of the work we propose
to do is aimed toward quantifying our uncertainties.
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The Underlying Issues

How does one identify relevant variables?

How does one identify, characterize and quantify
causal interactions?

How do we quantify the uncertainty in our results?
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The Underlying Issues

How does one identify relevant variables?

How does one identify, characterize and quantify
causal interactions?

How do we quantify the uncertainty in our results?

When the data look like this…
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Our Efforts
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Entropy

We can characterize the behavior of a system X by looking at the set of states
the system visits as it evolves in time.  If a state is visited rarely, we would be
surprised to find the system there.  We can express the expectation (or lack of
expectation) to find the system in state x in terms of the probability that it can
be found in that state, p(x), by

This quantity is often called the surprise, since it is large for improbable
events and small for probable ones.

Averaging this quantity over all of the possible states of the system gives a
measure of our knowledge about the state of the system

which is called the entropy.

)(

1
log)(

xp
xh =

!!
""

#==
XxXx

xpxp
xp

xpXH )(log)(
)(

1
log)()(



11 of 52 Earth-Sun Systems Technology Conference 2005

Joint Entropy

If the system states can be described with multiple parameters, the
entropy is computed by averaging over all possible states

This is called the Joint Entropy, since it describes the entropy of the
states of X and Y, which jointly describe the system.  You can think of X
and Y as representing subsystems of the original system X×Y.
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Mutual Information

In this case, an important quantity is the difference of entropies,

This is called the Mutual Information (MI) since it describes the amount
of information that is shared between the two subsystems.
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If you know something about subsystem X, the mutual information describes how
much information you also possess about Y.   For this reason, MI is key in
identifying relationships across climate variables, and in identifying and selecting a
set of relevant variables that aid in the prediction of another climate variable.

If two climate variables are independent, then the joint entropy is

which gives a mutual information of zero, since

While mutual information can identify dependencies, it cannot determine the causal
nature the interaction.

Identifying Relationships
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Relation to Probability Densities

The mutual information can also be written as

Which highlights the fact that this is about the probability density of the
states of the system.

Note that if the joint probability density p(x,y) can be factored into p(x) p(y),
then the mutual information is zero and the two systems X and Y are
independent.
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Transfer Entropy

Recently, Schreiber (2000) introduced a novel information-
theoretic quantity called the Transfer Entropy (TE).  Consider two
subsystems X and Y, with data in the form of a two time series of
measurements

then the transfer entropy can be written as

which describes the degree to which information about Y allows
one to predict future values of X.  This is then a measure of the
causal influence that the subsystem Y has on the subsystem X.
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Transfer Entropy

We can write this another way using co-informations
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Again, this describes the degree to which information about Y allows
one to predict future values of X.

Once can vary s-t, which leads to a TE spectrum.
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Estimating Information-Theoretic Quantities

Develop proven tools that will allow researchers to identify relevant
variables, and to quantify and characterize their causal interactions.

The basic procedure is straightforward:
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Estimating Information-Theoretic Quantities

Develop proven tools that will allow researchers to identify relevant
variables, and to quantify and characterize their causal interactions.

The basic procedure is straightforward:

1.  Estimate the probability density from which the data were sampled.
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Estimating Information-Theoretic Quantities

Develop proven tools that will allow researchers to identify relevant
variables, and to quantify and characterize their causal interactions.

The basic procedure is straightforward:

1.  Estimate the probability density from which the data were sampled.
2.  Using this probability density, estimate the various necessary
entropies.
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Estimating Information-Theoretic Quantities

Develop proven tools that will allow researchers to identify relevant
variables, and to quantify and characterize their causal interactions.

The basic procedure is straightforward:

1.  Estimate the probability density from which the data were sampled.
2.  Using this probability density, estimate the various necessary
entropies.

In practice this is extremely difficult since not only are we interested in the
values of these quantities, but we are also interested in the associated
uncertainties of our estimates.
We begin by developing optimal histogram models of the probability
densities…
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Histograms as Probability Density Models

Histograms can be viewed as simple models of the probability
density from which the data were sampled.

They are convenient since they have regions of constant
probability.
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Histograms

N = 10000, M = 10000 N = 10000, M = 1000 N = 10000, M = 100

N = 10000, M = 47 N = 10000, M = 23

The histogram should contain only details warranted by the data.

N = 10000, M = 10
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Histograms as Probability Densities

The important concept is that a histogram is a model of the underlying probability
density from which the data were sampled.

Instead of bins, these are regions of approximate constant probability density.

N = 10000, M = 23

1321
,,,, !M"""" K

We use Bayesian methods to find the
optimal model parameters

The result is a constant-piecewise model
described by M segments, each with
probabilities
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Bayes Theorem
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Bayes Theorem describes how our prior knowledge about a
model, based on our prior information I, is modified by the
acquisition of new information or data: Rev. Thomas Bayes 

       1702-1761 
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Machine Learning
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Bayes Theorem is a learning rule.
The Prior Probability describes what you first knew.
Multiply this by a term that describes the effect of your new
information, and the result is what you know after you have
taken into account your new data.

Rev. Thomas Bayes 
       1702-1761 
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Posterior Probability
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Posterior for the Number of Bins

By integrating over all possible bin probabilities, we can derive the
posterior probability of the number of bins given the data.
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optBINS Algorithm

function optM = optBINS(data,minM,maxM)

if size(data)>2 | size(data,1)>1
    error('data dimensions must be (1,N)');
end

N = size(data,2);

% Loop through the different numbers of bins

% and compute the posterior probability for each.

logp = zeros(1,maxM);

for M = minM:maxM

    n = hist(data,M);  % Bin the data (equal width bins here)

    p = 0;
    for k = 1:M

p = p + gammaln(n(k)+0.5);
    end

    logp(M) = N*log(M) + gammaln(M/2) – M*gammaln(1/2) - gammaln(N+M/2) + p;

end

[maximum, optM] = max(logp);

return
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Optimal Histograms

Optimal Binning for N = 3000 Gaussian distributed data points: M = 14
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Optimal Histograms

Optimal Binning for N = 3000 data points from a staircase density: M = 4
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Optimal Histograms

Optimal Binning for N = 3000 data points from a uniform density: M = 1
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The Optimal Histogram

The histogram should contain only details warranted by the data.

N = 10000, M = 10000 N = 10000, M = 1000 N = 10000, M = 100

N = 10000, M = 47 N = 10000, M = 23 N = 10000, M = 10
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Sufficient Data?

When there are insufficient data (N = 30), the posterior probability has
multiple local maxima, and the error bars on the bin probabilities are large.
None of the bin heights are known to be significantly greater than zero.
We have found that 100-150 data points are necessary to estimate a
probability density.
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Excessive Round-Off?

In the case where the data have been excessively rounded, the
discrete nature of the data is a relevant feature.

In this case, information has been lost and cannot be recovered.
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Error Bars on Density Parameters

The posterior probability can be used to compute the mean bin
probabilities as well as their standard deviations.
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Where N is the number of data points, M is the number of bins, ni is
the number of data points in the ith bin.

Note that a bin still has a nonzero probability even if there are no
counts.  Just because you don’t have data for an event doesn’t rule
out that the event cannot occur.  Bayes handles this naturally.
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Probability Density Visualization

We have written two Matlab visualization routines that display
histogram models of probability density functions along with the
error bars.  These error bars signify the inherent uncertainties in
our inferences from a finite data set.  The heights of the bars
represent the mean density and the error bars represent the
standard deviations about the mean.
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Extendable to Multi-Dimensional Densities

Extendible to multi-dimensional histograms

N = 10000

M = 11,12

optimal sub-optimal
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Entropy Estimation

Entropy estimation is relatively easy with a constant-piecewise model

N = 10000, M = 23
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Entropy Estimation

And also in higher-dimensions…
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How to Obtain the Uncertainties

To calculate the uncertainties in the entropy estimates, one must
first realize that we are uncertain as to the bin probabilities of the
probability density model.

By sampling a set of bin probabilities, we obtain a set of probable
density functions, along with a set of probable entropies.

From this set of probable
entropies, we can compute
the mean and variance.
Thus quantifying both the
entropy and our uncertainty.
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Entropies from Sampling

This shows some of the results from sampling from the posterior
probability and computing the entropies.

The data was from a Gaussian distribution with µ = 0, σ = 1.
The true entropy is Htrue = 1.419
N = 10000, M = 24

50000 Samples
H =   1.4202
         1.4161
         1.4159
         …
         1.4211
         1.4259
         1.4290

Hest = 1.423 ± 0.007
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Preliminary Mutual Information Results

Mutual Information between ISCCP percent cloud cover and Seasonality.

The data consisted of monthly averages of percent cloud cover resulting in a time-series of
198 months of 6596 equal-area pixels each with side length of 280 km.  The analysis was
performed pixel-wise so that for each pixel:
X = cloud cover percentages and Y = month of the year (seasonal state).
The MI was computed for each pixel independently and is color-coded on the map above.
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Cloud Cover and Seasonality

Mutual Information between ISCCP percent cloud cover and Seasonality.

This method finds the Inter-Tropical Convection Zones, The Monsoon Regions,
the Sea Ice off Antarctica, and cloud cover in the North Atlantic and Pacific.

This figure can be directly compared to the PCA analysis performed by Rossow
et al. 1991, J. Climate, 6:2394-2418.
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Cloud Cover and Cold Tongue Index

Mutual Information between ISCCP percent cloud cover and Cold
Tongue Index (CTI), which describes the sea surface temperature
anomalies in the eastern equatorial Pacific Ocean (6N-6S, 180-90W)
and is indicative of ENSO variability.

Cloud cover data is from ISCCP C2 and CTI data is from T. Mitchell:
http://tao.atmos.washington.edu/pacs/additional_analyses/sstanom6n6s18090w.html
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New Refined Results

Refined analysis with error bars
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Statistical Significance

Values below line do not indicate statistically significant
interactions
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Transfer Entropy

We are currently completing code to compute Transfer Entropies
with Error Bars.  Our earlier results indicate that this is useful as a
potential indicator of causal interactions.

Data from 1.25° N  191.25° W
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